Loading…

READY TO ROCK?

Click the button below to start exploring our website and learn more about our awesome company
Start exploring

Interestingly, mildly elevated levels of Ccl2, Ccl3, Ccl4 and Il1b stimulated MSC homing and promote repairing of the damage tissues in non-diabetic physiological conditions [41-46]

Interestingly, mildly elevated levels of Ccl2, Ccl3, Ccl4 and Il1b stimulated MSC homing and promote repairing of the damage tissues in non-diabetic physiological conditions [41-46]. Conclusions The present study demonstrates an inhibitory effect of AGEs on MSC proliferation and migration via ROS-p38-mediated pathway and production of pro-inflammatory chemokines/cytokines. products (AGEs), as endogenous inflammatory mediator, compromise the physiological function of mesenchymal stem cells (MSCs). MSCs have a potential role in cell replacement therapy in acute myocardial infarction and ischemic cardiomyopathy. However, mechanisms of AGEs on MSCs are still not unveiled. Methods Reactive oxygen species (ROS), genes regulation, cell proliferation and migration have been detected by AGE-BSA stimulated MSCs. Results We found that em in vitro /em stimulation with AGE-BSA induced generation of reactive oxygen species (ROS), and inhibited dose-dependently proliferation and migration of MSCs. Microarray and molecular biological assessment displayed an increased expression and secretion of Ccl2, Ccl3, Ccl4 and Il1b in a dose- and time-dependent manner. These chemokines/cytokines of equivalent concentration to those in conditioned medium exerted an inhibitory effect on MSC proliferation and migration after stimulation for 24 h. Transient elevation of phospho-p38 in MSCs upon AGE-BSA stimulation was blocked with p38 inhibitor. Conclusions The study indicates that AGE-BSA induces production of chemokines/cytokines in a dose- and time-dependent manner via activation of ROS-p38 mediated pathway. These chemokines/cytokines exert an inhibitory effect on MSC growth and migration, suggesting an amplified dysfunction of MSCs by AGEs. Background Emerging evidence has exhibited that cell-based therapy including mesenchymal stem cells (MSCs) for acute myocardial infarction or ischemic cardiomyopathy holds promise [1-3]. MSCs, isolated from bone marrow, exhibit a high capacity of em ex vivo /em expansion, allowing further biological modifications and clinically huge-dose preparation of the cells. Besides, MSCs are characterized by great potential to transdifferentiate into cardiomyocytes and vascular-like structure [4-6]. Diabetes is usually associated with adverse outcome after myocardial infarction [7]. Not unexpectedly, the effects of improving left ventricular function and reducing infarct size after MI-503 stem cell therapy, which are observed in non-diabetes, have been significantly attenuated or bleached in diabetic patients with acute myocardial infarction [8]. Type 2 diabetes mellitus (T2DM) not only decreases the abundance of bone marrow derived CD133+ stem cells following acute myocardial infarction, but also limits their activation [9]. However, the abnormal profiles of MSCs in diabetes and disease-related mechanisms have been less clarified. One of the reasons for stem cell dysfunction is due to exposure of advanced glycation end products (AGEs) in diabetic milieu. Previous studies have shown that AGEs are significantly associated with diabetic cardiovascular complications and worse prognosis [10,11]. em In vitro /em stimulation with glyceraldehydes- or glycolaldehyde-modified albumin reduces proliferation of MSCs, and increases intracellular generation of reactive oxygen species (ROS) and number of apoptotic cells, with accompanying MI-503 inhibition of adipogenic or chondrogenic differentiation [12]. It remains unclear if glycated protein could amplify the inflammatory response in MSCs and inhibit proliferation and migration of these cells. The present study has shown that AGE-BSA dose-dependently inhibited proliferation and migration of MSCs via ROS-p38 MAPK-mediated pathway. Microarray analysis and molecular biological approach of gene expressions displayed increased expression and secretion of chemokines and cytokines including CC chemokine ligand (Ccl) 2, Ccl3, Ccl4 and interleukin (Il)-1 beta. Notably, these proinflammatory factors of equivalent concentration to those in conditioned medium (AGE-BSA, 200 ug/ml) functioned to inhibit proliferation and migration of MSCs. Materials and methods The Animal Care Committee of the National Cardiovascular Center approved the experimental protocol. Cell culture Isolation and expansion of MSCs were performed as previously described [13]. Briefly, bone marrow cells were isolated from male Sprague Dawley rats (weighing 100-150 g) by flushing out the femoral and tibial cavities with phosphate-buffered saline. Cells were grown in low glucose Dulbecco’s Modified Eagle Medium, supplemented with 10% fetal bovine serum, 100 U/ml penicillin and 100 ug/ml streptomycin (Gibco, NY, USA). These cells were proved to be positive for ESR1 CD29 (Biolegend, CA, USA) and CD90 (eBioscience, CA, USA) surface markers and negative MI-503 for CD34 (Santa cruz, CA, USA) and CD45 (Abcam, Cambridge, UK) [14]. The STEMPRO osteogenesis and adipogenesis differentiation kits (Gibco) were used to detect the capacity of MSC differentiation. MTT assay The proliferation of MSCs was tested by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT, Sigma-Aldrich, Mo, USA) [15]. MSCs (1 104/well) were plated on a 96-well plate and stimulated by different factors at varying doses and time points. OD was measured by Microplate Reader (Bio-Rad, CA, USA) at 490 nm (n = 3). Measurement of intracellular.